Home
Class 12
MATHS
I=int0^π(x^3+10x+9sinx+5)dx...

`I=int_0^π(x^3+10x+9sinx+5)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi) x log sinx dx

I_10=int_0^(pi/2)x^(10)sinx dx then I_10+90I_8 is (A) 10(pi/2)^6 (B) 10(pi/2)^9 (C) 10(pi/2)^8 (D) 10(pi/2)^7

int_(0)^(pi) x log sinx\ dx

int_0^5(x^2+3x)dx =

int x^2 sinx^3 dx

int x^3 sinx^4 dx

int_(0)^(pi)(x)/(1+sinx)dx .

Suppose I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx , then

I=int_(pi//5)^(3pi//10) (sinx)/(sinx+cosx)dx is equal to

If I=int_(0)^(3pi//4) ((1+x)sinx+(1-x)cosx)dx , then the value of (sqrt(2)-1)I is_______