Home
Class 12
MATHS
If (omega!=1) ) is a cube root of unity ...

If `(omega!=1) )` is a cube root of unity and `omega` and `omega^(2)` satisfy the equation `(1)/(a+x)+(1)/(b+x)+(1)/(c+x)+(1)/(d+x)=(2)/(x)` then the value of` (1)/(a+1)+(1)/(b+1)+(1)/(c+1)+(1)/(d+1) is `

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a cube root of unity, then 1+omega = …..

If omega is a cube root of unity, then 1+ omega^(2)= …..

If omega(!=1) is a cube root of unity, and (1+omega)^7= A + B omega . Then (A, B) equals

If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =

If omega is a cube root of unity and /_\ = |(1, 2 omega), (omega, omega^2)| , then /_\ ^2 is equal to (A) - omega (B) omega (C) 1 (D) omega^2

If omega(!= 1) be an imaginary cube root of unity and (1+omega^2)^n=(1+omega^4)^n, then the least positive value of n is (a) 2 (b) 3 (c) 5 (d) 6

If omega(!=1) is a cube root of unity, and (1""+omega)^7=""A""+""Bomega . Then (A, B) equals (i.) (0, 1) (ii.) (1, 1) (iii.) (1, 0) (iv.) (-1,1)

If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=

If root3(-1) = -1 , -omega, -omega^(2) , then roots of the equation (x+1)^(3) + 64 =0 are

If omega(ne 1) be a cube root of unity and (1+omega^(2))^(n)=(1+omega^(4))^(n) , then the least positive value of n, is