Home
Class 12
MATHS
Matrix Mr is defined as \begin{bmatrix}r...

Matrix `M_r` is defined as \begin{bmatrix}r & r-1\\r-1 & r\end{bmatrix} , `r in N`; Value of `det(M_1)+det(M_2)+det(M_3)+...+det(M_2007)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If A is an invertible matrix of order 2, then det (A^(-1)) is equal to(a) det (A) (B) 1/(det(A) (C) 1 (D) 0

If A is an invertble matrix of order 2 then (det A ^-1) is equal to- a.det A b.1/ det A c. 1 d. 0

If A is an invertible matrix of order 2, then det (A^(-1)) is equal to (A) det (A) (B) 1/(det(A) (C) 1 (D) 0

If A is a 3 × 3 invertible matrix, then what will be the value of k if det(A^(–1)) = (det A)^k .

If B is a non-singular matrix and A is a square matrix, then det (B^(-1) AB) is equal to (A) det (A^(-1)) (B) det (B^(-1)) (C) det (A) (D) det (B)

If B is a non-singular matrix and A is a square matrix, then det (B^(-1) AB) is equal to (A) det (A^(-1)) (B) det (B^(-1)) (C) det (A) (D) det (B)

Let the matrix A and B defined as A=|[3,2] , [2,1]| and B=|[3,1] , [7,3]| Then the value of |det(2A^9 B^(-1)|=

Let A be a 2xx3 matrix, whereas B be a 3xx2 amtrix. If det.(AB)=4 , then the value of det.(BA) is

If M is a 3 xx 3 matrix, where det M=1 and MM^T=1, where I is an identity matrix, prove theat det (M-I)=0.

Let A be a square matrix of order 3 such that det. (A)=1/3 , then the value of det. ("adj. "A^(-1)) is