Home
Class 11
MATHS
lim(n rarr1)(n-1)/(sqrt(n-1))...

`lim_(n rarr1)(n-1)/(sqrt(n-1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: ("lim")_(n rarr oo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(sqrt(3n^2)))

lim_(n rarr oo)((n+1)^(4)-(n-1)^(4))/((n+1)^(4)+(n-1)^(4))

lim_(n rarr oo)2^(1/n)

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

lim_(n rarr oo)(3+sqrt(n))/(sqrt(n))

7. lim_(n rarr oo)((n/n)^n+((n-1)/n)^n)+.................(1/n)^n) equals (A)e/(e-1) (B)1/(1+e) (C)1/(1-e) (D)0

Let I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx. Then lim_(nrarroo)(I_(n))/(I_(n-2))=

lim_(n rarr oo)(2^(n+1)+3^(n+1))/(2^n+3^n) equals (A)2 (B)3 (C)5 (D)0

lim_(n to oo)(1)/(n)(1+sqrt((n)/(n+1))+sqrt((n)/(n+2))+....+sqrt((n)/(4n-3))) is equal to:

underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)/(n)]