Home
Class 12
MATHS
(1+x^(2))(dy)/(dx)+y=tan^(-1)x...

`(1+x^(2))(dy)/(dx)+y=tan^(-1)x`

Promotional Banner

Similar Questions

Explore conceptually related problems

(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)

The solution of differential equation (1+x^(2)) (dy)/(dx) + y = e^(tan^(-1)x)

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

Find (dy)/(dx) if y=tan^(-1)((4x)/(1+5x^2))+tan^(-1)((2+3x)/(3-2x))

Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^2)+tan^(-1)(2+3x)/(3-2x)

Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^2)+tan^(-1)(2+3x)/(3-2x)

IF y=e^(tan^(-1)x) then prove that : (1+x^(2))(d^2y)/(dx^2)+(2x-1)(dy)/(dx)=0 .

Find (dy)/(dx) for y=tan^(-1)sqrt((a-x)/(a+x)) ,-a < x < a

"Find" (dy)/(dx)"if" y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

Find (dy)/(dx) for y=tan^(-1) sqrt(sec^2x/ cosec^2x)