Home
Class 12
MATHS
The domain of f(x)=(1)/(sqrt(9-x^(2)))+...

The domain of `f(x)=(1)/(sqrt(9-x^(2)))+sqrt(x^(2)-4)`
(A)` (-oo,oo)`
(B)`(-oo,-3)∪ (2,oo)`
(C)`(-4,-2)∪(2,4)`
(D)`(-3-2]∪[2,3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (A) (-oo,oo) (B) (0,oo (C) (-oo,""0) (D) (-oo,oo)"-"{0}

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

lim_(x to oo ) (sqrt(3x^(2)-1)-sqrt(2x^(2)-3))/(4x+3)

The domain of definition of f(x)=x-3-2sqrt(x-4)-x-3+2sqrt(x-4) is a. [4,oo) b. (-oo,4] c. (4,oo) d. (-oo,4)

The domain of f(x)=((log)_2(x+3))/(x^2+3x+2) is R-{-1,2} (b) (-2,oo) R-{-1,-2,-3} (d) (-3,oo)-(-1,-2}

The value of lim_(xrarr oo) (3sqrt(x^3+x^2)-3sqrt(x^3-x^2)) , is

The domain of definition of f(x)=sqrt((x+3)/((2-x)(x-5))) is (a) (-oo,-3]uu(2,5) (b) (-oo,-3)uu(2,5) (c) (-oo,-3]uu[2,5] (d) none of these

The domain of f(x)=3/(4-x^2)+log_(10) (x^3-x) (1) (-1,0)uu(1,2)uu(3,oo) (2) (-2,-1)uu(-1,0)uu(2,oo) (3) (-1,0)uu(1,2)uu(2,oo) (4) (1,2)uu(2,oo)

lim_(x->oo)x^(3/2)(sqrt(x^3+1)-sqrt(x^3-1))

The domain of the function f(x)=sqrt(log_((|x|-1))(x^2+4x+4)) is (a) (-3,-1)uu(1,2) (b) (-2,-1)uu(2,oo) (c) (-oo,-3)uu(-2,-1)uu(2,oo) (d)none of these