Home
Class 12
MATHS
If from any point on the circle x^(2)+y^...

If from any point on the circle `x^(2)+y^(2)-a^(2)` .tangents are drawn to the circle `x^(2)+y^(2)=b^(2)(a>b)` then the angle between tangents is

Promotional Banner

Similar Questions

Explore conceptually related problems

From any point on the circle x^(2)+y^(2)=a^(2) tangents are drawn to the circle x^(2)+y^(2)=a^(2) sin^(2) theta . The angle between them is

From any point on the circle x^(2)+y^(2)=a^(2) tangent are drawn to the circle x^(2)+y^(2)=a^(2)sin^(2)theta . The angle between them is

Tangents are drawn from any point on the circle x^(2)+y^(2) = 41 to the ellipse (x^(2))/(25)+(y^(2))/(16) =1 then the angle between the two tangents is

If tangents are drawn from any point on the circle x^(2) + y^(2) = 25 the ellipse (x^(2))/(16) + (y^(2))/(9) =1 then the angle between the tangents is

If two tangents are drawn from a point to the circle x^(2) + y^(2) =32 to the circle x^(2) + y^(2) = 16 , then the angle between the tangents is

From a point on the circle x^2+y^2=a^2 , two tangents are drawn to the circle x^2+y^2=b^2(a > b) . If the chord of contact touches a variable circle passing through origin, show that the locus of the center of the variable circle is always a parabola.

If two tangents are drawn from a point on x^(2)+y^(2)=16 to the circle x^(2)+y^(2)=8 then the angle between the tangents is

Statement I Two tangents are drawn from a point on the circle x^(2)+y^(2)=50 to the circle x^(2)+y^(2)=25 , then angle between tangents is (pi)/(3) Statement II x^(2)+y^(2)=50 is the director circle of x^(2)+y^(2)=25 .

The tangents PA and PB are drawn from any point P of the circle x^(2)+y^(2)=2a^(2) to the circle x^(2)+y^(2)=a^(2) . The chord of contact AB on extending meets again the first circle at the points A' and B'. The locus of the point of intersection of tangents at A' and B' may be given as

Tangents are drawn from a point on the circle x^(2)+y^(2)-4x+6y-37=0 to the circle x^(2)+y^(2)-4x+6y-12=0 . The angle between the tangents, is