Home
Class 12
MATHS
Problem: If f:R rarr R,where f(x)=x^(2)+...

Problem: If `f:R rarr R,`where `f(x)=x^(2)+1`,then `f^(-1)(26)` is equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

If f:R->R , where f(x)=x^2+1 , then f^(-1)(-5) is

The function f:R rarr R, f(x)=x^(2) is

If f : R - {1} rarr R, f(x) = (x-3)/(x+1) , then f^(-1) (x) equals

if f(x) = x-[x], in R, then f^(')(1/2) is equal to

If function f : R rarr R^(+), f(x) = 2^(x) , then f^(-1) (x) will be equal to

If f: R rArr R and f(x)= 4x + 3 , then f^(-1) (x) is

If f(x)=9x-x^(2) , x in R , then f(a+1)-f(a-1) is equal to

If f : R rarr R , f(x) = sin^(2) x + cos^(2) x , then f is

If f : R rarr R , f(x) = 1/(x^2 - 1) , then domain is

The function f:R rarr R defined as f(x)=(x^(2)-x+1)/(x^(2)+x+1) is