Home
Class 11
MATHS
Prove that sin(A/2)=sqrt((1-cosA)/2)...

Prove that `sin(A/2)=sqrt((1-cosA)/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=340^(@), prove that 2sin((A)/(2))=-sqrt(1+sin A)+sqrt(1-sin A) and 2cos((A)/(2))=-sqrt(1+sin A)-sqrt(1-sin A)

If A=580^(@), prove that 2sin((A)/(2))=-sqrt(1+sin A)-sqrt(1-sin A)

Prove that: i) sqrt((1-cosA)/(1+cosA))="cosec"A-cotA ii) sqrt((1+sinA)/(1-sinA))=secA-tanA

Prove that: sin15^(@)=(sqrt(3)-1)/(2sqrt(2))

Prove that: sin15^(@)=(sqrt(3)-1)/(2sqrt(2))

If A=460^(@), prove that 2cos((A)/(2))=-sqrt(1+sin A)+sqrt(1-sin A)

Prove that sin ((23pi)/24) = sqrt((2 sqrt2 - sqrt3 -1)/(4 sqrt2))

Prove that : sqrt((1+cosA)/(1-cosA))+sqrt((1-cosA)/(1+cosA))=2 "cosec"A

Prove that sqrt((1+cosA)/(1-cosA))=("cosec"A+cotA).

Prove that: sqrt((1+cosA)/(1-cosA))={:("cosec"A+cotA, if 0ltAltpi),(-"cosec"A-cotA, if pi lt A lt 2pi):}