Home
Class 12
MATHS
x=(t-sin t), y=(1-cos t) :then (d^(2...

`x=(t-sin t), y=(1-cos t)` :then `(d^(2)y)/(dx^(2))` at `t=pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

x=a(t-sin t),y=a(1+cos t) then (dy)/(dx) =

x=a (t-sin t) , y =a (1-cos t) find dy/dx

x = "sin" t, y = "cos" 2t

If x=3cos t and y=5sint , where t is a parameter, then 9(d^(2)y)/(dx^(2)) at t=-(pi)/(6) is equal to

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x=a (cos t + t sin t) and y=a ( sin t- t cos t), find (d^(2)y)/(dx^(2))

If x=2cost-cos2t ,\ \ y=2sint-sin2t , find (d^2y)/(dx^2) at t=pi/2 .

If x=a(cos t+t sin t) and y=a(sin t - t cos t), then (d^2y)/dx^2

If x=a sin t,y=b cos t, then (dy)/(dx)=