Home
Class 10
MATHS
Show : a sqrt(b) - c sqrt(b) = ( a -...

Show :
`a sqrt(b) - c sqrt(b) = ( a - c ) sqrt( b )`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : ( sqrt(a) + sqrt(b) ) ( sqrt(a) - sqrt(b) )

Show that : sqrt( a/b ) = sqrt(a)/ sqrt( b )

If : asec^(2) theta - b * tan^(2) theta = c,"then" = sin theta = A) sqrt((a +c)/(b + c) B) sqrt((a -c)/(b - c) C) sqrt((a -c)/(b + c) D) sqrt((a + c)/(b - c)

Evaluate : ( sqrt( 1 + b ) - 1) / b = a ) b /( sqrt( 1 + b ) - 1) b ) b/( sqrt( 1 + b ) + 1) c ) 1/ ( sqrt( 1 + b ) + 1)

Let a,b,c,d,A,B,C,D in R . If A/a = B/b = C/c = D/d then (sqrt(Aa) + sqrt(Bb) + sqrt(Cc) + sqrt(Dd)) / (sqrt(a+b+c+d) sqrt(A+B+C+D))=

If sum_(k = 1)^(oo) (1)/((k + 2)sqrt(k) + ksqrt(k + 2)) = (sqrt(a) + sqrt(b))/(sqrt(c)) , where a, b, c in N and a,b,c in [1, 15] , then a + b + c is equal to

The conjugate surd of sqrt(a)+b is sqrt(a)-b b- "sqrt(a) sqrt(a)+sqrt(b) sqrt(a)-sqrt(b)

If c!=0 and the equation p/(2x)=a/(x+c)+b/(x-c) has two equal roots,then p can be (sqrt(a)-sqrt(b))^(2) b.(sqrt(a)+sqrt(b))^(2) c.a+b d.a-b

(a+c sqrt(b))(2+y sqrt(b))