Home
Class 12
MATHS
If f(x)=((2^(x)-1)^(3))/(sin((x)/(p))log...

If `f(x)=((2^(x)-1)^(3))/(sin((x)/(p))log(1+(x^(2))/(3)))` is continuous at `x=0` and `f(0)=(6log2)^(3). `
(A) 1 (B) 2 (C) 3 (D) 4

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={{:(,((4^(x)-1)^(3))/(sin(x//4)log(1+x^(2)//3)),x ne 0),(,k,x=0):} is a continous at x=0, then k=

f(x)=sqrt(log((3x-x^(2))/(x-1)))

The value of lim_(xrarr0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)) ,is

The value of a for which the function f(x)=f(x)={((4^x-1)hat3)/(sin(x a)log{(1+x^2 3)}),x!=0 12(log4)^3,x=0 may be continuous at x=0 is 1 (b) 2 (c) 3 (d) none of these

The function f(x)=((3^x-1)^2)/(sinx*ln(1+x)), x != 0, is continuous at x=0, Then the value of f(0) is

If the function f(x)=(2x-sin^(-1)x)/(2x+tan^(-1)x) is continuous at each point of its domain, then the value of f(0) (A) 4/3 (B) 1/3 (C) -1/3 (D) 2/3

The value of a for which the function f(x)={(((4^x-1)^3)/(sin(x/a)log(1+x^2/3)) ,, x!=0),(12(log4)^3 ,, x=0):} may be continuous at x=0 is :

Determine f(0) so that the function f(x) defined by f(x)=((4^x-1)^3)/(sinx/4log(1+(x^2)/3)) becomes continuous at x=0

Determine f(0) so that the function f(x) defined by f(x)=((4^x-1)^3)/(sinx/4log(1+(x^2)/3)) becomes continuous at x=0

If f(x)={(sin((2x^2)/a)+cos((3x)/b))^((ab)/x^2),x!=0, and e^3, x=0 is continuous at x=0AAb in R then minimum value of a is a. -1//8 b. -1//4 c. -1//2 d. 0