Home
Class 11
CHEMISTRY
Calculate the kinetic energy of an elect...

Calculate the kinetic energy of an electron in the second Bohr orbit of H-atom `a_@` is Bohr radius)
(A) `(h^(2))/(16 pi^(2)ma_(0)^(2))`
(B) `(h^(2))/(4 pi^(2)ma_(0)^(2))`
(C) `(h^(2))/(64 pi^(2)ma_(0)^(2))`
(D) `(h^(2))/(32 pi^(2)ma_(0)^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is [ a_(0) is Bohr radius] :

The kinetic energy of the electron in the second Bohr's orbit of a hydrogen atom [ a_(0) is Bohr's radius] is

What is the angular velocity (omega) of an electron occupying second orbit of Li^(2+) ion? (a) (8pi^(3)me^(4))/(h^(3))K^(2) (b) (8pi^(3)me^(4))/(9h^(3))K^(2) (c) (64)/(9)xx(pi^(3)me^(4))/(h^(3))K^(2) (d) (9pi^(3)me^(4))/(h^(3))K^(2)

Determine Bohr's radius of Li^(2+) ion for n = 2. Given (Bohr's radius of H-atom = a_0 )

If the radius of the first Bohr orbit of the H atom is r then for the Li^(2+) ion it will be:

int_0^pi(xtanx)/(secx+cosx)dxi s (a) (pi^2)/4 (b) (pi^2)/2 (c) (3pi^2)/2 (d) (pi^2)/3

The height h of cylinder equals the circumference of the cylinder. In terms of h , what is the volume of the cylinder? (a) (h^3)/(4pi) (b) (h^2)/(2pi)\ (c) (h^3)/2 (d) pih^3

int_0^pi(xtanx)/(secx+cosx)dxi s (pi^2)/4 (b) (pi^2)/2 (c) (3pi^2)/2 (d) (pi^2)/3

Which of the following can be the angular momentum of an electron orbiting in a hydrogen atom ? (a) "4h"/pi , (b) "3h"/(2pi) , (c ) "3h"/(4pi) , (d) h/pi

The area of a circular path of uniform width h surrounding a circular region of radius r is (A) pi (h+2r)r (B) pi h(2r+h)dot (C) pi (h+r) r (D) pi (h+r) h