Home
Class 12
MATHS
Let f(x)={[bx^(2)+1,x<=2],[a-x,2ltxlt4],...

Let `f(x)={[bx^(2)+1,x<=2],[a-x,2ltxlt4],[6bx+3,xge4]}` and `g(x)={[1+sqrt(2)sinx,0lexle(pi)/4],[3+cot^(2)x,(pi)/4ltxltpi]}`, If `y=f(g(x))` is continuous at `x=(pi)/(4)` and the line `ax+by+1=0` is a normal to the curve `x^(2)+y^(2)+2x-6y-4=0` ,then (A) `a-24b=5,` (B) `a-4b=5,` (C) `a+b=-15,` (D) `a+b=-(13)/(21)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={{:(,x^(3),x lt 1),(,ax^(2)+bx+c,:x ge 1):} . If f''(1) exists, then the value of (a^(2)+b^(2)+c^(2)) is

Let f (x) =x ^(2) +bx+c, minimum value of f (x) is -5, then abosolute value of the difference of the roots of f (x) is :

Let f (x) =ax ^(2) +bx + c,a ne 0, such the f (-1-x)=f (-1+ x) AA x in R. Also given that f (x) =0 has no real roots and 4a + b gt 0. Let p =b-4a, q=2a +b, then pq is:

Let f(x) = ax^(2) - bx + c^(2), b ne 0 and f(x) ne 0 for all x in R . Then

Let f(x)=(x^(2))/(1-x^(2)),xne0,+-1 , then derivative of f(x) with respect to x, is

Let f (x) =x ^(2) + bx + c AA in R, (b,c, in R) attains its least value at x =-1 and the graph of f (x) cuts y-axis at y =2. The value of f (-2) + f(0) + f(1)=

Let f(x)=x^(2)-x+1, AA x ge (1)/(2) , then the solution of the equation f(x)=f^(-1)(x) is

Let f(x) =ax^(2) + bx + c and f(-1) lt 1, f(1) gt -1, f(3) lt -4 and a ne 0 , then

Let f (x) =(x^(2) +x-1)/(x ^(2) - x+1) , In above problem, the range of f (x) AA x in [-1, 1] is:

Let f (x) =(x^(2) +x-1)/(x ^(2) - x+1), then the largest value of f (x) AA x in [-1, 3] is: