Home
Class 12
MATHS
If lim(n rarr oo)1/nsum(k=1)^(n)k ln((n^...

If `lim_(n rarr oo)1/nsum_(k=1)^(n)k ln((n^(2)+(k-1)^(2))/(n^(2)+k^(2)))` exists and is equal to L .Then the absolute value of L is....... ([.] denotes G.I.F)

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(1/n)

Evaluate ("lim")_(n rarr oo)sum_(k=1)^nk/(n^2+k^2)

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

lim_(n->oo)1/nsum_(r=1)^(2n)r/(sqrt(n^2+r^2)) equals

lim_(nrarroo) sum_(k=1)^(n)(k^(1//a{n^(a-(1)/(a))+k^(a-(1)/(a))}))/(n^(a+1)) is equal to

lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n)) is equal to :

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

lim_(n rarr oo)((1+1/(n^(2)+cos n))^(n^(2)+n) equals

Evaluate lim_(n->oo)1/nsum_(r=n+1)^(2n)log_e(1+r/n)

Show that lim_(nrarr infty) sum_(k=0)^(n)(""^(n)Ck)/(n^k(k+3))=e-2