Home
Class 12
MATHS
Show that (r(1))/(bc)+(r(2))/(ca)+(r(3))...

Show that `(r_(1))/(bc)+(r_(2))/(ca)+(r_(3))/(ab)=(1)/(r)-(1)/(2R)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (r_1)/(b c)+(r_2)/(c a)+(r_3)/(a b)=1/r-1/(2R)

Show that ((1)/(r _(1))+ (1)/(r_(2)))((1)/(r_(2))+(1)/(r _(3)))((1)/(r _(3))+(1)/(r_(1)))=(64 R^(3))/(a ^(2)b^(2) c^(2))

Show that r_(1)+r_(2)=c cot ((C)/(2))

If r_(1), r_(2) ,r_(3) are the ex-radii of DeltaABC, then prove that (bc)/(r_(1))+(ca)/(r _(2))+(ab)/(r _(3))=2R [((a)/(b)+(b)/a)+((b)/(c)+(c)/(b))+((c)/(a)+ (a)/(c))-3]

Show that (r_(1)+ r _(2))(r _(2)+ r _(3)) (r_(3)+r_(1))=4Rs^(2)

Let ABC be a triangle with incentre I and inradius r. Let D, E, F be the feet of the perpendiculars from I to the sides BC, CA and AB, respectively, If r_(2)" and "r_(3) are the radii of circles inscribed in the quadrilaterls AFIE, BDIF and CEID respectively, then prove that r_(1)/(r-r_(1))+r_(2)/(r-r_(2))+r_(3)/(r-r_(3))=(r_(1)r_(2)r_(3))/((r-r_(1))(r-r_(2))(r-r_(3)))

Show that 16R^(2)r r_(1) r _(2) r_(3)=a^(2) b ^(2) c ^(2)

Prove that r_(1) r_(2) + r_(2) r_(3) + r_(3) r_(1) = (1)/(4) (a + b + c)^(2)

Let the incircle with center I of A B C touch sides BC, CA and AB at D, E, F, respectively. Let a circle is drawn touching ID, IF and incircle of A B C having radius r_2dot similarly r_1a n dr_3 are defined. Prove that (r_1)/(r-r_1)dot(r_2)/(r-r_2)dot(r_3)/(r-r_3)=(a+b+c)/(8R)

(r_(2)+r_(3))sqrt((r r_(1))/(r_(2)r_(3)))=