Similar Questions
Explore conceptually related problems
Recommended Questions
- Prove that (n-r+1)"^nC(r-1) = n"^(n-1)C(r-1)
Text Solution
|
- Show that nC(r)=(n-r+1)/(r)*(nC(r-1))
Text Solution
|
- Prove that "^n Cr+^(n-1)Cr+...+^r Cr=^(n+1)C(r+1) .
Text Solution
|
- If sum(r=0)^(n-1)((^nC(r))/(nC(r)+^(n)C(r+1)))^(3)=(4)/(5) then n=
Text Solution
|
- If nCr +nC(r+1) = (n+1)Cx then x is
Text Solution
|
- The value of sum(r=0)^(n-1)(nC(r))/(nC(r)+^(n)C(r+1)) is eqaul to
Text Solution
|
- Property:- (i) nCr=nC(n-r) (ii) (nCr)/(r+1)=((n+1)C(r+1))/(n+1)
Text Solution
|
- Write the expression \ ^n C(r+1)+\ ^n C(r-1)+2xx\ ^n Cr in the simples...
Text Solution
|
- ^n Cr :^n C(r+1)=1:2and^n C(r+1):^n C(r+2)=2:3,f i n dnandr
Text Solution
|