Home
Class 11
MATHS
Prove that C(n,r) C(r,s) = C(n,s) C(n-s,...

Prove that C(n,r) C(r,s) = C(n,s) C(n-s,r-s),`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that "^nC_r+2 ^(n)C_(r-1)+ ^(n)C_(r-2) = ^(n+2)C_r .

Prove that "^nC_r ^rC_5= ^nC_5 ^(n-5)C_(r-5) .

Prove that ((n),(r))+2((n),(r-1))+((n),(r-2))=((n+2),(r))

Prove that C_0C_r+C_1 C_(r+1)+ C_2 C_(r+2)+...............+c_(n-r) C_n=((2n)!)/((n-r)!(n+r)!)

Prove that: sum_(r=0)^(n) 3^( r) ""^(n)C_(r) = 4^(n) .

If C_(0) , C_(1), C_(2), …, C_(n) are the binomial coefficients in the expansion of (1 + x)^(n) , prove that (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1)) ((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r)) .

Prove that sum_(r=0)^n^n C_rsinr xcos(n-r)x=2^(n-1)sin(n x)dot

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)= ((n+1)!)/ (r!(n-r+1)!) .

If a,b,c,d are in G.P., prove that (a^(n) + b^(n)), (b^(n) + c^(n)), (c^(n) + d^(n)) are in G.P.