Home
Class 11
MATHS
Evaluate : 2C0+(2^2C1)/2+(2^3C2)/3+........

Evaluate : `2C_0+(2^2C_1)/2+(2^3C_2)/3+........+(2^11C_10)/11`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : 2C_0+2^2 C_1/2+2^3 C_2/3+........+2^(n+1) C_n/ (n+1)= (3^(n+1)-1)/(n+1) .

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove that : C_0+ C_1/2 +C_2/3+.........+C_n/(n+1)= (2^(n+1)-1)/(n+1) .

Evaluate : ""^10C_1+""^10C_2+""^10C_3...... ""^10C_10 .

3C_0+3^2(C_1)/2+3^3(C_2)/3+.............3^(n+1)*(C_n)/(n+1) equal to

Evaluate ""^(10)C_(1)+""^(10)C_(2)+ . . .+""^(10)C_(10)

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : C_0-2C_1+3C_2-.........+(-1)^n (n+1)C_n=0 .

Prove that (C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n) = (C_0C_1C_2.....C_(n-1)(n+1)^n)/(n!)

Give that : C_1+2C_2 x+3C_3 x^2+.....+2n. C_(2n). x^(2n-1)=2n(1+x)^(2n-1) , where C_r=((2n)!)/(r !(2n-r)!) , r=0,1,2, ,2n , then prove that C_1^2-2C_2^2+3C_3^2-..........-2n C_(2n)^2=(-1)^n . nC_n .

(C_0)/(1. 3)-(C_1)/(2. 3)+(C_2)/(3. 3)-(C_3)/(4. 3)+...... +(-1)^n(C_n)/((n+1)*3) is

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + … + C_(n) x^(n) , Show that (2^(2))/(1*2) C_(0) + (2^(3))/(2*3) C_(1) + (2^(4))/(3*4)C_(2) + ...+ (2^(n+2)C_n)/((n+1)(n+2))= (3^(n+2))/((n+1)(n+2))