Home
Class 11
MATHS
Prove that C0Cr+C1 C(r+1)+ C2 C(r+2)+.....

Prove that `C_0C_r+C_1 C_(r+1)+ C_2 C_(r+2)+...............+c_(n-r) C_n=((2n)!)/((n-r)!(n+r)!)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that "^nC_r ^rC_5= ^nC_5 ^(n-5)C_(r-5) .

Find the coefficient of x^(n-r) in the expansion of (x+1)^n (1+x)^n . Deduce that C_0C_r+C_1C_(r-1)+......+C_(n-r) C_n= ((2n!))/((n+r)!(n-r)!) .

Prove that (C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n) = (C_0C_1C_2.....C_(n-1)(n+1)^n)/(n!)

Prove that "^nC_r+2 ^(n)C_(r-1)+ ^(n)C_(r-2) = ^(n+2)C_r .

If C_(0) , C_(1), C_(2), …, C_(n) are the binomial coefficients in the expansion of (1 + x)^(n) , prove that (C_(0) + 2C_(1) + C_(2) )(C_(1) + 2C_(2) + C_(3))…(C_(n-1) + 2C_(n) + C_(n+1)) ((n-2)^(n))/((n+1)!) prod _(r=1)^(n) (C_(r-1) + C_(r)) .

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : C_0C_n+C_1C_(n-1)+C_2C_(n-2)+.....+ C_nC_0= ((2n!))/(n!)^2 .

C_1/C_0+2C_2/C_1+3C_3/C_2+............+nC_n/C_(n-1)=(n(n+1))/2

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove that : C_0+ C_1/2 +C_2/3+.........+C_n/(n+1)= (2^(n+1)-1)/(n+1) .

Prove that : C_(0)-3C_(1)+5C_(2)- ………..(-1)^n(2n+1)C_(n)=0

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : (1+C_1/C_0)(1+C_2/C_1)(1+C_3/C_2).... (1+C_n/ C_(n-1))=((n+1)^n)/(n!) .