Home
Class 11
MATHS
Let x=1+a +a^(2) +….. And y= 1 + b + b^(...

Let `x=1+a +a^(2) +`….. And `y= 1 + b + b^(2)+`…… where `|a| lt 1` and `|b| lt 1`. Prove that: `1+ ab + a^(2)b^(2) +…… =(xy)/(x+y-1)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let tan^(-1) y = tan^(-1) x + tan^(-1) ((2x)/(1 -x^(2))), " where " |x| lt (1)/(sqrt3) . Then a value of y is

If x^2/a^2 - y^2/b^2 = 1 , prove that ((d^2y)/dx^2) = (-b^4)/(a^2y^3)

If x^2/a^2 + y^2/b^2 = 1 , prove that (d^2y)/(dx^2) = -(b^4)/(a^2y^3)~

y = e^(m sin^(-1)x), prove that (1 - x^2) y_2 - xy_1 = m^2y

If (x+iy)^(1/3)=a+ib , where a,b,x, y in R, show that x/a-y/b=-2(a^2+b^2) .

Given x = cy+bz, y = az + cx, z = b x + ay where, x,y,z are not all zero prove that a^2+b^2 +c^2 + 2 a b c = 1.

Let y = sin^(-1) ((2x)/(1 + x^2)) where 0 lt x lt 1 and 0 lt y lt pi//2 then (dy)/(dx) is equal to

If tanA-tan B=x and cot B- cot A=y . Prove that cot(A-B)=1/x + 1/y

If y=[sin^-1 x]^2 , then prove that : (1 -x^2) y_2-xy_1 - 2 = 0 .