Home
Class 11
MATHS
True or False : Equation of the line p...

True or False :
Equation of the line passing thorugh the point `(acos^3 theta, a sin^3 theta)` and perpendicular to the line `x sec theta + y cosec theta = a` is `x cos theta - y sin theta = a sin 2theta`.

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation to the straight line passing through the point (a "cos"^(3) theta, a "sin"^(3) theta) and perpendicular to the line x "sec" theta + y"cosec" theta = a is

Find dy/dx when x = cos theta + cos 2 theta, y = sin theta + sin 2 theta)

Find the equation of the straight line joining the points (a cos theta_1 a sin theta_1) and (a cos theta_2, a sin theta_2) .

(cosec theta -sin theta ) (sec theta - cos theta ) (tan theta + cot theta ) = 1.

Find (dy)/(dx) in the following x = cos 2 theta + 2 cos theta, y = sin 2 theta - 2 sin theta

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

Find dy/dx when x = a (cos theta + theta sin theta) , y = a (sin theta - theta cos theta).

Eliminate theta between the equation : x =a cos theta + b sin theta, y =a sin theta- b cos theta .

Prove that (sin theta- "cosec" theta )(cos theta- sec theta )=(1)/(tan theta + cot theta).

Prove that : (sin theta)/(1+cos theta) + (1+cos theta)/(sin theta)= 2 cosec theta .