Home
Class 11
MATHS
Find the eccentricity, co-ordinates of t...

Find the eccentricity, co-ordinates of the foci and the length of the latus-rectum of the ellipse `4x^2 + 3y^2 = 36`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the latus rectum, eccentricity, coordinates of the foci and the length of axes of the ellipse 4x^2 + 9y^2 - 8x - 36y+4=0 .

Find the length of latus rectum of the ellipse. x^2/16+y^2/9=1 .

The latus rectum of the ellipse 16x^2+y^2=16 is:

Find the length of latus rectum of the ellipse x^(2)/25+y^(2)/16=1 .

In the following, find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. 4x^2 + 9y^2 = 36

The eccentricity of the ellipse 4x^2 + 9y^2 = 36 is :

Find the co-ordinates of the foci, the vertices and length of latus-rectum of the hyperbola : 16x^(2) - 9y^(2) = 576 .

The length of the latus-rectum of the parabola x^2- 4x-8y +12= 0 is: