Home
Class 11
MATHS
If a^2 > b^2, then what are the directri...

If `a^2 > b^2`, then what are the directrices of the ellipse `(x^2)/(a^2) + (y^2)/(b^2) = 1`?

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the area of enclosed by the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 .

Find the equation of the tangent to the ellipse (x^2)/a^2+(y^2)/(b^2) = 1 at (x_1y_1)

Area of ellipse x^2/a^2 + y^2/b^2 = 1, a > b is :

Find the eccentricity of the ellipse x^(2)/(a^(2))+y^(2)/b^(2)=1 when a=5 and b=3.

The distance between the directrices of the ellipse x^2/4+y^2/9=1 is:

the centre of the ellipse ((x+y-2)^(2))/(9)+((x-y)^(2))/(16)=1 , is

If e and e' are the eccentricities of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2)) =1 and (y^(2))/(b^(2))-(x^(2))/(a^(2))=1 , then the point ((1)/(e),(1)/(e')) lies on the circle:

Show that the tangents at the ends of conjugate diameters of the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 intersect on the ellipse x^(2)/a^(2)+y^(2)/b^(2)=2 .