Home
Class 11
MATHS
Show that the point (x,y) given by x = (...

Show that the point `(x,y)` given by `x = (2at)/(1+t^2)` and `y = (a(1-t^2))/(1+t^2)` lies on a circle for all real t such that `-1 le t le 1`, where a is any given real number.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx when x = 2t/(1+ t^2) and y = (1- t^2)/(1+ t^2)

Show that the point : x=(2rt)/(1+t^2), y=(r(1-t^2))/(1+t^2) (r constant) lies on a circle for all values of t such that -1 le t le 1 .

Find dy/dx at t = 2 when x = (2bt)/(1+t^2) and y = (a(1-t^2))/(1+t^2)

If sinx = (2t)/(1+t^2), tan y = (2t)/(1-t^2) , find dy/dx

If x = (1 - t^2)/(1 + t^2) and y = (2t)/(1+t^2) , then show that (dy/dx) + x/y =0

IF [x= a {(1 + t^2) /(1-t^2)] and [y= 2t/(1 -t^2)] find dy/dx.

Find (dy)/(dx) in the following x = (1 - t^2)/(1 + t^2), y = (2t)/(1 + t^2)

Find dy/dx , when: x = a(1-t^2)/(1+t^2), y = b (2t)/(I+t^2) .

Find (dy)/(dx) in the following x = a((1 + t^2)/(1 - t^2)) , y = (2t)/(1 - t^2)

If x=(1-t^2)/(1+t^2) , y=(2t)/(1+t^2) , find (dy)/(dx) at x=2.