Home
Class 11
MATHS
If y = sqrt((1-x)/(1+x)), find the value...

If `y = sqrt((1-x)/(1+x))`, find the value of `(1-x^2)dy/dx+y`
`-1ltxlt1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = sqrt((1+x)/(1-x)) , prove that (1-x^2) dy/dx - y = 0

if y = sqrt((1-x)/(1+x)) , prove that : (1-x)^2 (dy/dx)+y=0

If y = (sin^-1x)/(sqrt(1-x^2)) , prove that (1-x^2)(dy/dx)- xy = 1

If y = log sqrt((1 + cos^2 x)/(1 - e^(2x))), find (dy)/(dx) .

If y = sqrt(1+sqrt(1+x^4)) , prove that y(y^2-1)dy/dx = x^3

If y= (sqrt(x) + 1/sqrt(x))^2 .Find dy/(dx)

If y = sin^-1[xsqrt(1-x) - sqrtx (sqrt(1-x^2))] find dy/dx

If y = log (x + sqrt(x^2+1))/(sqrt(x^2+1)) , prove that (x^2 +1) dy/dx + xy = 1

If sqrt(x^2 +1) y = log(sqrt(x^2+1)-x) , then show that (x^2 +1) dy/dx + xy + 1=0

If y=sqrt(x+1)+sqrt(x-1) , prove that sqrt(x^2-1)(dy)/(dx)=1/2y .