Home
Class 11
MATHS
If x = (1 - t^2)/(1 + t^2) and y = (2t)/...

If `x = (1 - t^2)/(1 + t^2) and y = (2t)/(1+t^2)`, then show that `(dy/dx) + x/y =0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sinx = (2t)/(1+t^2), tan y = (2t)/(1-t^2) , find dy/dx

IF [x= a {(1 + t^2) /(1-t^2)] and [y= 2t/(1 -t^2)] find dy/dx.

If x=(1-t^2)/(1+t^2) , y=(2t)/(1+t^2) , find (dy)/(dx) at x=2.

If (x=a sin (2t)(1+cos(2t)) and (y=b cos (2t) (1- cos(2t)) , then show that ((dy/dx)_(t=pi/4) =b/a) .

If x= e^(cos2t) and y = e^(sin2t) , then move that (dy)/(dx) = -(ylogx)/(xlogy) .

If x^2 + y^2 = t + 1/t and x^4 + y^4 = t^2 + 1/t^2 , then show that dy/dx = -1/(x^3y)

Find dy/dx when x = 2t/(1+ t^2) and y = (1- t^2)/(1+ t^2)

If x = (1+logt)/t^2, y = (3+2logt)/t, t > 0 , prove that y(dy/dx) - 2x(dy/dx)^2 = 1

If x=sin^(-1)((2t)/(1+t^2)) and y= tan^(-1)((2t)/(1-t^2)),t > 1 . Prove that dy/dx=-1

x= a sin 2t(1 + cos2t) and y = b cos 2t(1- cos 2t) , show that [(dy/dx)_(t=pi/4) =b/a] .