Home
Class 11
MATHS
Find dy/dx when x = cos theta + cos 2 th...

Find `dy/dx` when `x = cos theta + cos 2 theta, y = sin theta + sin 2 theta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find dy/dx : x = cos theta - cos 2theta, y = sin theta - sin 2theta

Find dy/dx when x = a (cos theta + theta sin theta) , y = a (sin theta - theta cos theta).

Find (d^2y)/(dx^2) when : x=2 cos theta - cos 2theta and y = 2 sin theta - sin 2theta .

Find (dy)/(dx) in the following x = cos 2 theta + 2 cos theta, y = sin 2 theta - 2 sin theta

Find dy/dx when x= a (theta + sin theta), y = a(1+cos theta)

Find dy/dx when x=a (theta + sin theta), y = a(1 + cos theta)

If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find dy/dx : x = a(cos theta + theta sin theta), y = a(sin theta - theta cos theta)

Show that the equations of the normal at any point theta on the curve x = 3 cos theta - cos^3 theta, y = 3 sin theta - sin ^3 theta is 4(y cos^3 theta - x sin^3 theta) = 3 sin 4 theta