Home
Class 11
MATHS
Let a1,a2,……..an be fixed real numbers a...

Let `a_1,a_2,……..a_n` be fixed real numbers and define a function `f(x) = (x-a_1)(x-a_2)…..(x-a_n).` What is `underset(xrarra_1)limf(x)`? For some `anea_1,a_2,…….a_n` compute `underset(xrarra)limf(x)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a_1 , a_2 ... . . a_n be fixed real numbers and define a function f(x)= (x -a_1 )(x-a_2 )...(x -a_n). What is lim_(x rarr a_1)f(x) ? For some a ne a_1,a_2,....a_n , compute lim_(x rarr a)f(x) .

if f(x) = (x - a_1) (x - a_2) .....(x - a_n) then find the value of lim_(x to a_1) f(x)

underset(xrarra)lim (x^n-a^n)/(x-a) is equal to:

If f(x)= |{:(x,x^(2),x^(3)),(1,2,3),(0,1,x):}| underset(x to1)limf(x) is equal to

If a_1,a_2,a_3,....a_n are positive real numbers whose product is a fixed number c, then the minimum value of a_1+a_2+....+a_(n-1)+3a_n is

If a_1,a_2,a_3,.....,a_(n+1) be (n+1) different prime numbers, then the number of different factors (other than1) of a_1^m.a_2.a_3...a_(n+1) , is

If a_1,a_2,a_3,……………….. are in A.P., then the value of: {:|(a_1,a_2,1),(a_2,a_3,1),(a_3,a_4,1)| is equal to

Show that a_1,a_2,….a_n,… form an AP where an is defined as below,- a_n=9-5n Also find the sum of the first 15 terms in each case.

If 'f' is differentiable at x = a, find (underset(xrarra)lim(x^2f(a)-a^2f(x))/(x-a))

What is the 20th term of the sequence defined by : a_n = (n- 1) (2-n)(3+n) ?