Home
Class 11
MATHS
True or False: underset(xrarr e)Lt(log...

True or False:
`underset(xrarr e)Lt(logx-1)/(x-e)=1/e`.

Promotional Banner

Similar Questions

Explore conceptually related problems

underset(xrarre)(Lt)((logx-1)/(x-e)) is equal to

True or False : If underset(x rarr a)Lt f(x)g(x) exists then both underset(xrarra^+)Lt f(X) and underset(xrarra^-) Lt g(x) exist separately.

Evaluate underset(xrarr0)lim (e^(2x)-1)/(sinx) .

Evaluate underset(xrarr0)lim (e^(ax)-1)/(e^(bx)-1) .

Evaluate: underset(xrarr0)lim (e^(log(1+2x)))/x

Evaluate underset(xrarr0)lim (e^x-sinx-1)/x

underset(xrarr0)lim (e^x -1)/(x) is equal to

Evaluate: underset(xrarr0)lim (x(e^x-1))/(1-cosx)

underset(x to0)(lim)(e^(x)-1)/(x) is :