Home
Class 11
MATHS
Find dy/dx, when: x = a(1-t^2)/(1+t^2), ...

Find `dy/dx`, when: `x = a(1-t^2)/(1+t^2), y = b (2t)/(I+t^2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx when x = 2t/(1+ t^2) and y = (1- t^2)/(1+ t^2)

Find (dy)/(dx) in the following x = (1 - t^2)/(1 + t^2), y = (2t)/(1 + t^2)

Find dy/dx when x = 4t, y = 4/t

Find (dy)/(dx) in the following x = a((1 + t^2)/(1 - t^2)) , y = (2t)/(1 - t^2)

Find dy/dx , if x and y are connected parametrically by the equations, given below without eliminating the parameter. x = (a(1+t^2))/(1-t^2), y = (2t)/(1-t^2)

Find dy/dx at t = 2 when x = (2bt)/(1+t^2) and y = (a(1-t^2))/(1+t^2)

Find dy/dx when x = a sin^2 t, y = b cos^2 t

Find dy/dx , if x and y are connected parametrically by the equations, given below without eliminating the parameter. x=(1-t^2)/(1+t^2), y = (2t)/(1+t^2)

Find dy/dx when x = e^(t-sint), y = e^(t + cost)

If sinx = (2t)/(1+t^2), tan y = (2t)/(1-t^2) , find dy/dx