Home
Class 11
MATHS
If y = sqrt((1+x)/(1-x)), prove that (1-...

If `y = sqrt((1+x)/(1-x))`, prove that `(1-x^2) dy/dx - y = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = (sin^-1x)/(sqrt(1-x^2)) , prove that (1-x^2)(dy/dx)- xy = 1

If y = sqrt(1+sqrt(1+x^4)) , prove that y(y^2-1)dy/dx = x^3

If y = sqrt((1-sin2x)/(1+sin2x)) , prove that dy/dx + sec^2 (pi/4 -x) = 0,0 le x le pi/4

If y = log (x + sqrt(x^2+1))/(sqrt(x^2+1)) , prove that (x^2 +1) dy/dx + xy = 1

If y=log (x+ sqrt ( x^2+1)), prove that: (x^2+1) d^2y/dx^2 + xdy/dx=0 .

If log (sqrt(1 + x^2) - x) = y sqrt(1 + x^2) , show that (1 - x^2) (dy)/(dx) + xy + 1 = 0

If y= sin (2 sin^-1 x) , prove that: (1 - x^2 ) (d^2y/dx^2) - x(dy/dx) + 4y = 0 .

If y= (cos^-1 x)^2 , prove that: (1 - x^2 ) ((d^2y)/dx^2) - x(dy/dx) -2 = 0 .