Home
Class 12
MATHS
The perpendicular distance from origin t...

The perpendicular distance from origin to the plane `3x-2y-2z=2` is
(A) `sqrt(17)`
(B) `frac{2}{sqrt(17)}`
(C) `frac{3}{sqrt(17)}`
(D) `frac{2}{sqrt(17)}`

Promotional Banner

Similar Questions

Explore conceptually related problems

int frac{x}{x^2sqrt(x^4-1)} dx

The length of the perpendicular drawn from the point P(3,4,5) on y-axis is a. 3sqrt(2) b. 5 c. sqrt(113) d. 5sqrt(2) e. sqrt34

The distance between the parallel planes x+2y-3z=2 and 2x+4y-6z+7=0 is (A) 1/sqrt(14) (B) 11/sqrt(56) (C) 7/sqrt(56) (D) none of these

solve the equations: frac{2}{sqrt x} + frac{3}{sqrt y} =2 and frac{4}{sqrt x} - frac{9}{sqrt y} =-1

The distance between the parallel lnes y=2x+4 and 6x-3y-5 is (A) 1 (B) 17/sqrt(3) (C) 7sqrt(5)/15 (D) 3sqrt(5)/15

If vecalpha=3hati-hatk, |vecbeta|=vec(5) and vecalpha.vecbeta=3 then the area of the parallelogram for which vecalpha and vecbeta are adjacent sides is (A) sqrt(17)/2 (B) sqrt(14)/2 (C) sqrt(7)/2 (D) sqrt(241)

The perpendicular distance from the origin to the plane containing the two lines, (x+2)/3=(y-2)/5=(z+5)/7 and (x-1)/1=(y-4)/4=(z+4)/7 is: (a) 11sqrt6 (b) 11/(sqrt6) (c) 11 (d) 6sqrt(11)

The distance of the point (1, 2, 3) from the plane x+y-z=5 measured along the straight line x=y=z is 5sqrt(3) (2) 10sqrt(3) (3) 3sqrt(10) 3sqrt(5) (5) 2sqrt(5)

Radius of the circle that passes through the origin and touches the parabola y^2=4a x at the point (a ,2a) is (a) 5/(sqrt(2))a (b) 2sqrt(2)a (c) sqrt(5/2)a (d) 3/(sqrt(2))a

The value of sqrt(3-2\ sqrt(2)) is (a) sqrt(2)-1 (b) sqrt(2)+1 (c) sqrt(3)-sqrt(2) (d) sqrt(3)+\ sqrt(2)