Home
Class 10
MATHS
If all values x satisfying the inequalit...

If all values `x` satisfying the inequality `|(pi)/(2)-sin^(-1)((1-x^(2))/(1+x^(2)))|<(pi)/(3)` is `(a,b)` then `'a+b'` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

The product of all values of x satisfying the equation sin^(-1)cos((2x^2+10|x|+4)/(x^2+5|x|+3))=cot(cot^(-1)((2-18|x|)/(9|x|)))+pi/2 is (a) 9 (b) -9 (c) -3 (d) -1

Find the set of all real values of x satisfying the inequality sec^(-1)xgt tan^(-1)x .

The sum of all possible values of x satisfying the equation sin^(-1)(3x-4x^(3))+cos^(-1)(4x^(3)-3x)=(pi)/(2) is

The largest integral value of x satisfying the inequality (tan^(-1)(x))^(2)-4(tan^(-1)(x))+3gt0 is :

The set of real values of x satisfying the inequality log_(x+1/x)(log_2((x-1)/(x+2))) gt 0, is equal to

The minimum value of x which satisfies the inequality (sin^(-1)x)^(2)ge(cos^(-1)x)^(2) is

The complete set of values of x satisfying the inequality sin^(-1)(sin 5) gt x^(2)-4x is (2-sqrt(lambda-2pi), 2+sqrt(lambda-2pi)) , then lambda=

The set of all values of x satisfying the inequations (x-1)^(3) (x+1) lt 0 is

if allvalues of x which satisfies the inequality log _((1//3))(x ^(2) +2px+p^(2) +1) ge 0 also satisfy the inequality kx ^(2)+kx- k ^(2) le 0 for all real values of k, then all possible values of p lies in the interval :

The value of x satisfying the equation cos^(-1)3x+sin^(-1)2x=pi is