Home
Class 10
MATHS
Prove that : sqrt( a + b + 2sqrt( a b ...

Prove that :
`sqrt( a + b + 2sqrt( a b ) ) = sqrt(a ) + sqrt(b )`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that : sqrt( a/b ) = sqrt(a)/ sqrt( b )

Evaluate : ( sqrt(a) + sqrt(b) ) ( sqrt(a) - sqrt(b) )

x = ( sqrt ( a + b ) - sqrt (a -b ))/( sqrt (a +b ) + sqrt (a -b )), then what is bx ^(2) - 2ax + b equal to (b ne 0) ?

Prove that a sqrt(log_(a)b)-b sqrt(log_(b)a)=0

Evaluate : ( -b/a ) / sqrt( b/a ) + sqrt(b)/ sqrt(a ) = ?

(a+c sqrt(b))(2+y sqrt(b))

The conjugate surd of sqrt(a)+b is sqrt(a)-b b- "sqrt(a) sqrt(a)+sqrt(b) sqrt(a)-sqrt(b)

Prove that 2^{{sqrt(log_a 4sqrtab + log_b 4sqrtab)-sqrt((log_a)4sqrt(b/a)+log_b 4sqrt(a/b))}sqrt(log_a b))= { 2 , b gea gt1and 2^(log_b a) , 1 ltblta