Home
Class 11
MATHS
lim(xrarr0)(pi^(x)-1)/x=?...

`lim_(xrarr0)(pi^(x)-1)/x=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0)(pi^(x)-1)/(sqrt(1+x)-1)

Evaluate the following limits: lim_(xrarr0)((2^(x)-1)/(x))

Evalute lim_(xrarr0)((e^(3x)-1)/(x)).

Evaluate: (i)lim_(xrarr0)((e^(-x)-1)/(x))(ii)lim_(xrarr0)((e^(x)-e^(-x))/(x))(iii)lim_(xrarr0)((e^(x)+e^(-x)-2)/(x^(2)))

lim_(xrarr0) (sinx)/(x)= ?

lim_(xrarr0)((1+x)^(n)-1)/(x) is equal to

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

The value of lim_(xrarr0)((e^(x)-x-1)(x-sinx)ln(1+x))/(x^(6)) is equal to

lim_(xrarr0) (sin 3x)/x