Home
Class 12
MATHS
Derivative, y=a^(2)sin^(2)theta+b^(2)cos...

`Derivative, y=a^(2)sin^(2)theta+b^(2)cos^(2)theta` with respect to `theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (sin^(2)theta)/(cos theta)+cos theta=sec theta

cos ^(2) 2 theta - sin ^(2) theta = cos theta . cos 3 theta.

Prove that : sin^(2)theta+cos^(4)theta=cos^(2)theta+sin^(4)theta

Verify : sin^(2)theta+cos^(2)theta=1" if "theta=30^(@),

Prove that sin(2theta)/(1-cos2theta)=cot theta

If "cosec" theta = sqrt(5) , find the value of (i) 2-sin^(2)theta - cos^(2)theta (ii) 2 + (1)/(sin^(2)theta) - (cos^(2)theta)/(sin^(2)theta)

The value of sin^(8)theta+cos^(8)theta+sin^(6)theta cos^(2)theta+3sin^(4)theta cos^(2)theta+cos^(6)theta sin^(2)theta+3sin^(2)thetacos^(4)theta is equal to

Prove that sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta .

Evaluate : int (2 sin 2 theta- cos theta)/(6 - cos^(2) theta- 4 sin theta) d theta

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is