Home
Class 12
MATHS
If x^y= y^x, prove that (dy)/(dx)=(y/x-l...

If `x^y= y^x`, prove that` (dy)/(dx)=(y/x-logy)/(x/y-logx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^y. y^x=1 , prove that (dy)/(dx)=-(y(y+xlogy))/(x(ylogx+x))

If e^y=y^x , prove that (dy)/(dx)=((logy)^2)/(logy-1)

If x=e^(x//y) , prove that (dy)/(dx)=(x-y)/(xlogx)

If x=e^(x/y) ,prove that (dy)/(dx)=(x-y)/(xlogx)

If x^y=e^(x-y) , prove that (dy)/(dx)=(logx)/(1+logx)^2

If x^y=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^2)

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If x^y=e^(x-y), Prove that (dy)/(dx)=(logx)/((1+logx)^2)

If y^x=e^(y-x) , prove that (dy)/(dx)=((1+logy)^2)/(logy)

If y^x=e^(y-x) , prove that (dy)/(dx)=((1+logy)^2)/(logy)