Home
Class 11
MATHS
Let f(x) be a function define as f(x...

Let f(x) be a function define as f(x) = `{x ;x in Q,1-x ;x !in Q` If g(x)=f(f(x)) then value of `[g(1)+g(1/2)+g(pi/2)]`, where [.] greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

Let f(x)=x/(1+x^2) and g(x)=(e^(-x))/(1+[x]) (where [.] denote greatest integer function), then

Let f(x) = [x] , g(x)= |x| and f{g(x)} = h(x) ,where [.] is the greatest integer function . Then h(-1) is

Let f(x) be a function such that f(x).f(y)=f(x+y) , f(0)=1 , f(1)=4 . If 2g(x)=f(x).(1-g(x))

f:R to R is a function defined by f(x)= 10x -7, if g=f^(-1) then g(x)=

Let f(x)=sin x,g(x)=[x+1] and h(x)=gof(x) where [.] the greatest integer function. Then h'((pi)/(2)) is

Let f be a function defined on [0,2]. Then find the domain of function g(x)=f(9x^2-1)

Let f:(2,4)->(1,3) where f(x) = x-[x/2] (where [.] denotes the greatest integer function).Then f^-1 (x) is

If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x) , then the value of g'(1) is

Let f: R->R be the Signum Function defined as f(x)={1,x >0; 0,x=0; -1,x R be the Greatest Integer Function given by g(x) = [x] , where [x] is greatest integer less than or equal to x. Then does fog and gof coincide in (0,1]