Home
Class 11
MATHS
If (omega!=1) is a cube root of unity an...

If `(omega!=1)` is a cube root of unity and `omega` and `omega^(2)` satisfy the equation `(1)/(a+x)+(1)/(b+x)+(1)/(c+x)+(1)/(d+x)=2/x` then value of `(1)/(a+1)+(1)/(b+1)+(1)/(c+1)+(1)/(d+1)` is
(a) 1
(b) 2
(c) 3
(a) 0

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega(!=1) is a cube root of unity, and (1+omega)^7= A + B omega . Then (A, B) equals

If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =

If omega is a cube root of unity and /_\ = |(1, 2 omega), (omega, omega^2)| , then /_\ ^2 is equal to (A) - omega (B) omega (C) 1 (D) omega^2

If omega(!=1) is a cube root of unity, and (1""+omega)^7=""A""+""Bomega . Then (A, B) equals (i.) (0, 1) (ii.) (1, 1) (iii.) (1, 0) (iv.) (-1,1)

If omega(!= 1) be an imaginary cube root of unity and (1+omega^2)^n=(1+omega^4)^n, then the least positive value of n is (a) 2 (b) 3 (c) 5 (d) 6

If root3(-1) = -1 , -omega, -omega^(2) , then roots of the equation (x+1)^(3) + 64 =0 are

The least natural number satisfying the inequation (x-1)/x-(x+1)/(x-1)<2 is 0 (b) 1 (c) 2 (d) 3

If omega be a nth root of unity, then 1+omega+omega^2+…..+omega^(n-1) is (a)0(B) 1 (C) -1 (D) 2

If 1, omega, omega^(2) are three cube roots of unity, prove that (1- omega) (1- omega^(2))= 3

If omega is a cube root of unity, then find the value of the following: (1-omega)(1-omega^2)(1-omega^4)(1-omega^8)