Home
Class 12
MATHS
The value of int0^[[X]](x-[x])dx is...

The value of `int_0^[[X]](x-[x])dx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

For any real number x, the value of int_(0)^(x) [x]dx , is

The value of int_0^1e^(x^2-x)dx is (a) 1 (c) > e^(-1/4) (d)

The value of int_(0)^(100) e^(x-[x])dx , is

Find the value of int_0^1x(1-x)dx

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

If f:RrarrR defined by f(x)=sinx+x , then find the value of int_0^pi(f^-1(x))dx

The value of int_0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denotes the greatest integer function)

If int_0^1e^ (-x^2) dx=a , then find the value of int_0^1x^2e^ (-x^2) dx in terms of a .

If int_(0)^(1)e^(x^(2))(x-a)dx=0 , then the value of int_(0)^(1)e^(X^(2))dx is euqal to

int_0^1000 e^(x-[x])dx