Home
Class 12
MATHS
If f:A rarr B is onto and f(x)=cos x the...

If `f:A rarr B` is onto and `f(x)=cos x` then find `B` when `A={0,pi/6,pi/4,pi/3,pi/2}`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of c in Lagranges theorem for the function f(x)=logsinx in the interval [pi/6,(5pi)/6] is (a) pi/4 (b) pi/2 (c) (2pi)/3 (d) none of these

If f(x)=|cosx| , find f^(prime)(pi/4) and f^(prime)((3pi)/4) .

f(x)=sin+sqrt(3)cosx is maximum when x= pi/3 (b) pi/4 (c) pi/6 (d) 0

Let f(x) =(kcosx)/(pi-2x) if x!=pi/2 and f(x)=3 if x=pi/2 then find the value of k if lim_(x->pi/2) f(x)=f(pi/2)

If f(x)=tanx and A,B,C are the anlges of /_\ABC, then |(f(A), f(pi/4) f(pi/4)), (f(pi/4), f(B) f(pi/4)), (f(pi/4), f(pi/4) f(C))| = (A) 0 (B) -2 (C) 2 (D) 1

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-pi/2,pi/4) (b) (0,pi/2) (-pi/2,pi/2) (d) (pi/4,pi/2)

Let f:(-1,1)rarrB be a function defined by f(x)=tan^(-1)[(2x)/(1-x^2)] . Then f is both one-one and onto when B is the interval. (a) [0,pi/2) (b) (0,pi/2) (c) (-pi/2,pi/2) (d) [-pi/2,pi/2]

If f(x)=|cosx-sinx| , find f^(prime)(pi/6) and f^(prime)(pi/3) .

If f(x)=|cosx-sinx| ,find f^(prime)(pi/6) and f^(prime)(pi/3)dot

The angle of intersection of the curves y=2\ sin^2x and y=cos2\ x at x=pi/6 is (a) pi//4 (b) pi//2 (c) pi//3 (d) pi//6