Home
Class 11
MATHS
(cos theta + I sin theta)^2 is equal to...

`(cos theta + I sin theta)^2` is equal to

A

`cos 2theta + I sin 2theta)`

B

`sin2theta + I cos 2theta`

C

`cos 2theta - I sin 2theta`

D

none of these

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of f(k)=int_(0)^(pi//2) log (sin ^(2) theta +k^(2) cos^(2) theta) d theta is equal to

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

Let A = [ (cos theta, sin theta),(- sin theta, cos theta)] , then show that A ^(2) = [(cos 2 theta, sin 2 theta),( - sin 2 theta, cos 2 theta)]

Verify that [(cos theta, sin theta),(-sin theta, cos theta)] and [(cos theta, - sin theta),(sin theta, cos theta)] are inverse of each other.

Let theta in (pi//4,pi//2), then Statement I (cos theta)^(sin theta ) lt ( cos theta )^(cos theta ) lt ( sin theta )^(cos theta ) Statement II The equation e^(sin theta )-e^(-sin theta )=4 ha a unique solution.

If the coordinates of a variable point be (cos theta + sin theta, sin theta - cos theta) , where theta is the parameter, then the locus of P is

Simplify, costheta[[cos theta, sin theta],[-sin theta, cos theta]] + sin theta [[sin theta, -cos theta],[cos theta, sin theta]]