Home
Class 12
MATHS
int(0)^(10)([x]e^([x]))/(e^(x-1)) , wher...

`int_(0)^(10)([x]e^([x]))/(e^(x-1))` , where [ . ] is greatest integer `<=x`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(dx)/(e^(x)+e^(-x))

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int_(0)^(1) (dx)/(e^(x)+e^(-x))

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

rArrint_(0)^(oo) [(2)/(e^(x))]dx (where [*] denotes the greatest integer function) equals

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

int_(0)^(oo)[2e^(-x)]dx , where [.] deontes greatest integer function, is equal to

int_(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest integer function, is equal to

int_(0)^(1)e^(2x)e^(e^(x) dx =)