Home
Class 12
MATHS
If e^(y)(1+x)=1 then prove that (d^(2)y)...

If `e^(y)(1+x)=1` then prove that `(d^(2)y)/(dx^(2))=((dy)/(dx))^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(y) (x+1) =1 show that (d^(2) y)/( dx^(2)) = ((dy)/(dx))^(2)

If y=e^(ax) sin bx then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y=x^(x) , prove that: (d^(2)y)/(dx^(2))-1/y((dy)/(dx))^(2) - y/x=0

If e^y(x+1)=1 . Show that (d^2y)/(dx^2)=((dy)/(dx))^2

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2

If (a+bx)e^(y/x)=x , Prove that x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2 .

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=((dy)/(dx))^2 .

If e^y(x+1)=1, show that (d^(2y))/(dx^2)=((dy)/(dx))^2 If y=sin(2sin^(-1)x), show that ((1-x^2)d^(2y))/(dx^2)=x(dy)/(dx)-4y

If y=x^x , prove that (d^2y)/(dx^2)-1/y((dy)/(dx))^2-y/x=0