Home
Class 11
MATHS
If f(x)=log(100x)((2log(10)x+2)/(-x));g(...

If `f``(x)=log_(100x)``((2log_(10)x+2)/(-x));g(x)={x}` where `{x}` denotes the fractional part of x. If the function `fog(x)` exists then the maximum possible range of `g(x)` .
(1) `(0,10^(-3))uu(10^(-3),10^(-1))`
`(2) (0,10^(-2))uu(10^(-2),10^(-1))`
`(3) (0,10^(-3))uu(10^(-3),10^(-2))`
`(4) (0,10^(-1))uu(10^(-1), 1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let l_(1)=int_(1)^(10^(4))({sqrt(x)})/(sqrt(x))dx and l_(2)=int_(0)^(10)x{x^(2)}dx where {x} denotes fractional part of x then

((log)_(10)(x-3))/((log)_(10)(x^2-21))=1/2 then find x.

The domain of the function f(x) = log_10 log_10 (1 + x ^3) is

[log_10⁡(x)]^2 − log_10⁡(x^3) + 2=0

The domain of f(x)=3/(4-x^2)+log_(10) (x^3-x) (1) (-1,0)uu(1,2)uu(3,oo) (2) (-2,-1)uu(-1,0)uu(2,oo) (3) (-1,0)uu(1,2)uu(2,oo) (4) (1,2)uu(2,oo)

The domain of the definition of the function f(x)=(1)/(4-x^(2))+log_(10)(x^(3)-x) is

If log_(10)2,log_(10)(2^(x)-1) and log_(10)(2^(x)+3) are in A.P then the value of x is

If (1)/("log"_(x)10) = (2)/("log"_(a)10)-2 , then x =

Find the domain of the function f(x)=log_10((log_10 x^2)-5log_10 x+6)

Find domain of f(x)=log_(10)log_(10)(1+x^(3)) .