Home
Class 10
MATHS
e^(x log a)+e^(a log x)+e^(a log a)...

`e^(x log a)+e^(a log x)+e^(a log a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(x log a ) e^(x) dx is equal to A) (a^(x))/( log ae) + C B) ( e^(x))/( 1+log a ) + C C) ( ae )^(x) +C D) ((ae)^(x))/( log ae) +C

cos^(3) x e^(log sinx)

Evaluate: int(e^(6\ (log)_e x)-e^(5\ (log)_e x))/(e^(4\ (log)_e x)-e^(3\ (log)_e x))\ dx

Evaluate: int(e^(5\ (log)_e x)-e^(4\ (log)_e x))/(e^(3\ (log)_e x)-e^(2\ (log)_e x))\ dx

Evaluate: int(e^(5(log)_e x)-e^(4(log)_ex))/(e^(3(log)_e x)-e^(2logx))dx

Write a value of int(e^(x(log)_e a)+e^(a(log)_e x))\ dx

Write a value of int(e^(x(log)_e a)+e^(a(log)_e x))\ dx

If g(x)=|[a^(-x),e^(x log_e a),x^2],[a^(-3x),e^(3x log_e a),x^4],[a^(-5x),e^(5x log_e a),1]| , then

STATEMENT -1 : If f(x) = log_(x^(2)) (log x) , " then" f'( e) = 1/e STATEMENT -2 : If a gt 0 , b gt 0 and a ne b then log_(a) b = (log b)/(log a)

Find the range of f(x)=(log)_e x-((log)_e x)^2/(|(log)_e x|)