Home
Class 11
MATHS
e^x+e^y=e^(x+y) the dy/dx=?...

`e^x+e^y=e^(x+y)` the `dy/dx=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

xy=e^(x-y) then (dy)/(dx)=

If y=e^(x) then (dy)/(dx)

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

If x^(y)=e^(x-y) , then (dy)/(dx) is equal to

y=e^(x) find (dy)/(dx)

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1)) or, (dy)/(dx)+e^(y-x)=0

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1))

If tan(x+y)=e^(x+y) , then (dy)/(dx)

If x^(y)=e^(x-y) then Find (dy)/(dx)=