Home
Class 12
MATHS
I=int(1,)^(e^(x))(1)/(x)dx,...

`I=int_(1,)^(e^(x))(1)/(x)dx`,

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(1)=int_(e)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then

int(1)/(e^(-x)) dx

int(1)/(e^(x)+1)dx

Let I= int_(0)^(1) (e^(x))/( x+1) dx, then the vlaue of the intergral int_(0)^(1) (xe^(x^(2)))/( x^(2)+1) dx, is

int_(-1)^(1)e^(2x)dx

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

Let A=int_(0)^(1)(e^(x))/(x+1) dx then answer the following questions in terms of A. Q. int_(0)^(1)(x^(2)e^(x))/(x+1)dx equals

Let A=int_(0)^(1)(e^(x))/(x+1) dx then answer the following questions in terms of A. Q. int_(0)^(1)((x)/(x+1))^(2)e^(x)dx equals

The value of the integral int_(-a)^(a)(e^(x))/(1+e^(x))dx is

Find the value of integral A=int_(-a)^(a)(e^(x))/(1+ e^x)dx