Home
Class 11
MATHS
log2 log4 log5 x>0...

`log_2 log_4 log_5 x>0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log_2 (log_2 (log_3 x)) = log_2 (log_3 (log_2 y))=0 , then the value of (x+y) is

if log_2(log_3(log_4x))=0 and log_3(log_4(log_2y))=0 and log_3(log_2(log_3z))=0 then find the sum of x, y and z is

Find the square of the sum of the roots of the equation log_3x*log_4x*log_5x=log_3x*log_4x+log_4x*log_5x+log_3x*log_5x

if log_kx.log_5k = log_x5 , k!=1 , k>0 , then find the value of x

Solve the following equations. (iv) log_4log_3log_2x=0

Find domain of f(x) = log_5(log_4(log_3(log_2 x)))

Solve : log_4(log_3(log_2x))=0

Solve for x: log_(4) log_(3) log_(2) x = 0 .

Solve for x, y , z . log_2 x + log_4 y + log_4 z =2 log_3 y + log_9 z + log_9 x =2 log_4 z + log_16 x + log_16 y =2

If 6/5 a^A-3^B=9^C where A=log_a x.log_(10) alog_a 5,B=log_(10) (x/10) and C=log_(100) x+log_4 2 . Find x